iG5A

0.4~1.5kW(0.5~2HP) 1-phase 200~230Volts $0.4 \sim 22 \mathrm{~kW}(0.5 \sim 30 \mathrm{HP}) 3$-Phase 200~230Volts
0.4~22kW(0.5~30HP) 3-Phase 380~480Volts

Drive STARVERT iG5A

LS Starvert iG5A is very competitive in its price and shows an upgraded functional strength. User-friendly interface, extended drive ranges up to 22 kW , superb torque competence and small size of iG5A provides an optimum use environment.

Standard
 Compliance

Compactness

iG5A

User-

Friendliness
\& Easy
Maintenance

iG5A provides sensorless vector control, PID control, and ground-fault protection through powerful built-in functions.

Sensorless Vector Control

The built-in sensorless vector control provides the superb speed control and powerful high torque.

Ground-fault Protection During Running

The ground-fault protection of output terminal is possible during running.

Analog Control From -10V to 10V
Inputting analog signals from -10V to 10 V provides user-friendly operation.

Built-in PID Control

The built-in PID function enables to control flow-rate, oil-pressure, temperature, etc without any extra controller.

Built-in Dynamic Braking Circuit

The built-in dynamic braking circuit minimizes deceleration time via braking resistors.

Built-in 485 Communication

The built-in RS-485 communication supports remote control and monitoring between iG5A and other equipment.

Wide Product Range

iG5A consists of the product range from 0.4 to 22 KW .

RS-485 Communication

Connected to PC

Monitoring

- Checking operation status (Voltage, Current, Frequency, etc)
- Checking modified parameters
- Windows support

Remote Control

- Convenient remote control to modify operation status (Forward/Reverse operation, Frequency, etc)
- Easy parameter setting
- Available to control up to 31 Drives
-RS-485, Modbus communication
Connected to XGT Panel

Monitoring

- Checking operation time
- Automatic list-up of trip record
- Language support (Korean, English, Chinese)

Remote Control

- Convenient remote control to modify operation status (Forward/Reverse operation, Frequency, etc)
- Easy parameter setting
- Available to control up to 31 Drives
- RS-485, Modbus communication

User-Friendly Interface \& Easy Maintenance

The parameter setting becomes easier by adopting the 4 directions key. And iG5A supports easy maintenance via diagnosis and fan changeable structure.

Diagnosis of Output Module

Through easy parameter setting, iG5A can diagnose the status of output module.

Easy Change of Fan

iG5A is designed to be the fan changeable structure in preparation for a fan breakdown.

Cooling Fan Control

By controlling the cooling fan, iG5A provides a virtually quiet environment according to the status of operation.

User-Friendly Interface

The 4 directions key provides easy handling and monitoring.

External Loader (Optional)

The external loader away from a panel enables to control and monitor conveniently. And the parameters made by external loader can be copied and applicable to other Drives.

Model Name	Remarks
INV, REMOTE KPD 2M (SV-iG5A)	2 m
INV, REMOTE KPD 3M (SV-iG5A)	3 m
INV, REMOTE KPD 5M (SV-iG5A)	5 m

Compact Size

The compact size achieves cost-efficiency and various applications.

Global Standard Compliance CE UL

Global Standard

iG5A series complies with CE and UL standards.

PNP/NPN Input

Both PNP and NPN inputs become possible and these enable to use the outer power.
To do so, users will be given wider choices of selecting the ontroller.

Applicable Motor Ranges	1 Phase 200V	3 Phase 200V	3 Phase 400V
0.4kW (0.5HP)	SV004iG5A-1	SV004iG5A-2	SV004iG5A-4
0.75kW (1HP)	SV008iG5A-1	SV008iG5A-2	SV008iG5A-4
1.5kW (2HP)	SV015iG5A-1	SV015iG5A-2	SV015iG5A-4
2.2kW (3HP)		SV022iG5A-2	SV022iG5A-4
3.7 kW (5HP)		SV037iG5A-2	SV037iG5A-4
4.0kW (5.4HP)		SV040iG5A-2	SV040iG5A-4
5.5 kW (7.5HP)		SV055iG5A-2	SV055iG5A-4
7.5 kW (10HP)		SV075iG5A-2	SV075iG5A-4
11.0kW (15HP)		SV110iG5A-2	SV110iG5A-4
15.0kW (20HP)		SV150iG5A-2	SV150iG5A-4
18.5kW (25HP)		SV185iG5A-2	SV185iG5A-4
22.0 kW (30HP)		SV220iG5A-2	SV220iG5A-4

Standard Specifications

1 Phase 200V

		004	008	015
Max. Capacity ${ }^{11}$	（HP）	0.5	1	2
	（kW）	0.4	0.75	1.5
Output Rating	Capacity（kVA）${ }^{2 /}$	0.95	1.9	3.0
	FLA（A）${ }^{31}$	2.5	5	8
	Max Frequency	$400[\mathrm{~Hz}]^{4}$		
	Max Voltage	3 phase 200～230V ${ }^{51}$		
Input Rating	Rated Voltage	1phase 200～230 VAC（ $+10 \%$ ，－15\％）		
	Rated Frequency	$50 \sim 60[\mathrm{~Hz}](\pm 5 \%)$		
Cooling Method		Forced air cooling		
Weight（kg）		0.76	1.12	1.84

3 Phase 200V

SVロロロiG5A－2ロロ		004	008	015	022	037	040	055	075	110	150	185	220
Max． Capacity ${ }^{11}$	（HP）	0.5	1	2	3	5	5.4	7.5	10	15	20	25	30
	（kW）	0.4	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22
Output Rating	Capacity（kVA）${ }^{21}$	0.95	1.9	3.0	4.5	6.1	6.5	9.1	12.2	17.5	22.9	28.2	33.5
	FLA（A）${ }^{31}$	2.5	5	8	12	16	17	24	32	46	60	74	88
	Max Frequency	$400[\mathrm{~Hz}]^{4}$											
	Max Voltage	3 phase 200～230V ${ }^{51}$											
Input Rating	Rated Voltage	3 phase 200～230（ $+10 \%$ ，－15\％）											
	Rated Frequency	$50 \sim 60[\mathrm{~Hz}](\pm 5 \%)$											
Cooling Method		$\mathrm{N} / \mathrm{C}^{61}$	Forced air cooling										
Weight（kg）		0.76	0.77	1.12	1.84	1.89	1.89	3.66	3.66	9.0	9.0	13.3	13.3

3 Phase 400V

SVㅁロic5A－4ロロ		004	008	015	022	037	040	055	075	110	150	185	220
Max． Capacity ${ }^{11}$	（HP）	0.5	1	2	3	5	5.4	7.5	10	15	20	25	30
	（kW）	0.4	0.75	1.5	2.2	3.7	4.0	5.5	7.5	11	15	18.5	22
Output Rating	Capacity（kVA）${ }^{2 l}$	0.95	1.9	3.0	4.5	6.1	6.9	9.1	12.2	18.3	22.9	29.7	34.3
	FLA（A）${ }^{31}$	1.25	2.5	4	6	8	9	12	16	24	30	39	45
	Max Frequency	$400[\mathrm{~Hz}]^{4]}$											
	Max Voltage	3 phase 380～480V ${ }^{51}$											
Input Rating	Rated Voltage	3 phase 380～480 VAC（＋10\％，－15\％）											
	Rated Frequency	$50 \sim 60[\mathrm{~Hz}](\pm 5 \%)$											
Cooling Method		$\mathrm{N} / \mathrm{C}^{61}$	Forced air cooling										
Weight（kg）		0.76	0.77	1.12	1.84	1.89	1.89	3.66	3.66	9.0	9.0	13.3	13.3

1）Indicate the maximum applicable motor capacity when using 4 pole LS standard motor．
2）Rated capacity is based on 220 V for 200 V series and 440 V for 400 V series．
3）Refer to 15－3 of user＇s manual when carrier frequency setting（39）is above 3 kHz ．
4）Max．frequency setting range is extended to 300 Hz when H 40 （Control mode select）is set to 3 （Sensorless vector control）．
5）Max．output voltage cannot be higher than the input voltage．It can be programmable below input voltage．
6）Self－Cooling

Standard Specifications

Environment	Protection Degree	IP 20, NEMA1 (Ambient Temperature $\left.40^{\circ} \mathrm{C}\right)^{31}$
	Ambient Temp	$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$
	Storage Temp	$-20^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C}$
	Humidity	Below $90 \% \mathrm{RH}$ (No condensation)
	Altitude/Vibration	Below $1,000 \mathrm{~m}$ (From 1000 to 4000 m, the rated input voltage and rated output current of the drive must be derated by 1% for every 100 m.$), 5.9 \mathrm{~m} / \mathrm{sec}^{2}(0.6 \mathrm{G})$
	Atmospheric Pressure	$70 \sim 106 \mathrm{kPa}$
	Location	Protected from corrosive gas, Combustible gas, Oil mist or dust

[^0]
$0.4 \sim 7.5 \mathrm{~kW}$

Compact AC Drive

Wiring
11.0~22.0kW

Specifications for Power Terminal Block Wiring

-1.5kW (1 phase)

- $5.5 \mathrm{~kW} \sim 7.5 \mathrm{~kW}$ (3 phase)

- 11~22kW (3 phase)

	R, S, T wire		U, V, W wire		Ground Wire		Terminal Screw Size	Screw Torque (kgf.cm) / lb-in
	mm^{2}	AWG	mm^{2}	AWG	mm^{2}	AWG		
SV0004iG5A-1	2.5	14	2.5	14	4	12	M3.5	10/8.7
SV0008iG5A-1								
SV0015iG5A-1							M4	15/13
SV0004iG5A-2								
SV0008iG5A-2							M3.5	10/8.7
SV0015iG5A-2								
SV0022iG5A-2								
SV0037iG5A-2	4	12	4	12			M4	15/13
SV0040iG5A-2								
SV0055iG5A-2	6	10	6	10	6	10	M5	32/28
SV0075iG5A-2	10	8	10	8				
SV0110iG5A-2	16	6	16	6	16	6	M6	30.7/26.6
SV0150iG5A-2	25	4	25	4				
SV0185iG5A-2	35	2	35	2	25	4	M8	30.5/26.5
SV0220iG5A-2								
SV0004iG5A-4	2.5	14	2.5	14	2.5	14	M3.5	10/8.7
SV0008iG5A-4								
SV0015iG5A-4							M4	15/13
SV0022iG5A-4								
SV0037iG5A-4								
SV0040iG5A-4								
SV0055iG5A-4	4	12			4	12	M5	32/28
SV0075iG5A-4			4	12				
SV0110iG5A-4	6	10	6	10	10	8		
SV0150iG5A-4	16	6	10	8				30.7/26.6
SV0185iG5A-4					16	6	M6	30.5/26.5
SV0220iG5A-4	25	4	16	6	14			

※ Strip the sheaths of the wire insulation 7 mm when a ring terminal is not used for power connection.

※ SV185iG5A-2 and SV220iG5A-2 must use Ring or Fork Terminal certainly approved by UL.

Control Terminal Specifications

$\stackrel{+}{+}$	$\stackrel{+}{+}$	$\stackrel{+}{+}$	$\underset{05}{\oplus}$	\oplus	$\stackrel{\oplus}{\mathrm{P}}$	$\stackrel{\oplus}{+}$		VR	v		AM	M
	3B	3 C						VR	v		AM	

Terminal	Description	Wire Size (mm²)		Screw Size	Torque (Nm) ${ }^{11}$	Specification
		Single Wire	Stranded			
P1~P8	Multi-function input T/M 1-8	1.0	1.5	M2.6	0.4	
CM	Common terminal	1.0	1.5	M2.6	0.4	
VR	Power supply for external potentiometer	1.0	1.5	M2.6	0.4	Output voltage: 12 V Max. output current: 100 mA Potentiometer: 1~5kohm
V1	Input terminal for voltage operation	1.0	1.5	M2.6	0.4	Max. input voltage: -10V~+10V input
1	Input terminal for current operation	1.0	1.5	M2.6	0.4	0~20mA input Internal resistor: 250ohm
AM	Multi-function analog output terminal	1.0	1.5	M2.6	0.4	Max. output voltage: 11 V Max. output current: 10 mA
MO	Multi-function terminal for open collector	1.0	1.5	M2.6	0.4	Below DC $26 \mathrm{~V}, 100 \mathrm{~mA}$
MG	Ground terminal for external power supply	1.0	1.5	M2.6	0.4	
24	24V external power supply	1.0	1.5	M2.6	0.4	Max. output current: 100 mA
3A	Multi-function relay output A contact	1.0	1.5	M2.6	0.4	Below AC 250V, 1A
3B	Multi-function relay output B contact	1.0	1.5	M2.6	0.4	Below DC 30V, 1A
3 C	Common for multi-function relays	1.0	1.5	M2.6	0.4	

[^1]

	Display	Term	Description
KEY	RUN	Run key	Run command
	STOP/RESET	STOP/RESET key	STOP: Stop command during operation, RESET:Reset command when a fault occurs.
	A	Up key	Used to scroll through codes or increase parameter value
	∇	Down key	Used to scroll through codes or decrease parameter value
	\checkmark	Right key	Used to jump to other parameter groups or move a cursor to the right to change the parameter value
	4	Left key	Used to jump to other parameter groups or move a cursor to the left to change the parameter value
	\bigcirc	Enter key	Used to set the parameter value or save the changed parameter value
LED ${ }^{11}$	FWD	Forward run	Lit during forward run
	REV	Reverse run	Lit during reverse run
	RUN	Run key	Lit during operation
	SET	Setting	Lit during parameter setting

[^2]
Dimensions

Parameter Groups

There are 4 different parameter groups in iG5A series as shown below.

Parameter Group	Description
Drive Group	Basic parameters necessary for the drive to run. Parameters such as Target frequency, Accel/Decel time settable.
Function Group 1	Basic function parameters to adjust output frequency and voltage.
Function Group 2	Advanced function parameters to set parameters for such as PID Operation and second motor operation.
I/0 (Input/Output) Group	Parameters necessary to make up a sequence using multi-function input/output terminal.

Moving to Other Groups
Moving to Other Groups Using the Right ($>$) key

[^3]

1) Pressing the Left $(\boldsymbol{\langle}) /$ Right $(\mathbf{l}) /$ Up $(\mathbf{\Delta}) /$ Down $(\boldsymbol{\nabla})$ key while a cursor is blinking will cancel the parameter value change.

Pressing the Ent (\mathbf{O}) key in this status will enter the value into memory.
※ In step 7, pressing the Left ($\mathbf{<})$ or Right $(\boldsymbol{)}$) key while 16.0 is blinking will disable the setting.

Code Change in Drive Group			
	1	171717 10.119	- In the 1st code in Drive group " 0.00 ", press the Up ($\mathbf{\Delta}$) key once.
	2	(1519	- The 2nd code in Drive group "ACC" is displayed. - Press the Up ($\mathbf{\Delta})$ key once.
	3	AE5	- The 3rd code "dEC" in Drive group is displayed. - Keep pressing the $\operatorname{Up}(\mathbf{\Delta})$ key until the last code appears.
	4		- The last code in Drive group "drC" is displayed. - Press the Up ($\mathbf{\Lambda})$ key again.
	5	171717 10.0118	- Return to the first code of Drive group.
	- Use down ($\mathbf{\nabla})$ key for the opposite order.		

Trial Run

Multi-step Operation + Run/Stop via FX/RX + Max. Frequency Change
Operation Condition

Operation Command :
Run/Stop via FX/RX

Frequency Command :
Multi-step operation [Low (20), Middle (30), High (80)]

Max. Frequency Change :
From 60 Hz to 80 Hz

Wiring

1. Please make sure that R, S, T are connected to 3 phase $A C$ input, and U, V, W are also motor connection terminals.
2. After supplying the power, please set the frequency of multi-step among Low, Middle, and High.
3. If P1 (FX) turns on, the motor operates in forward. And after turning off, it stops according to the deceleration time.
4. If P2 (RX) turns on, the motor operates in reverse. And after turning off, it stops according to the deceleration time.

Parameter Setting

Step	Command	Code	Description	Default	After Change
1	Max. frequency change (FU1)	F21	Change Max. frequency.	60 Hz	80 Hz
2	Multi-step frequency (DRV)	st1	Set 'Low' step.	10 Hz	
3	Multi-step frequency (DRV)	st2	Set 'Middle' step.	20 Hz	
4	Multi-step frequency (I/O)	130	Set 'High' step.	20 Hz	
5	Forward run (P1: FX)	117	The default is FX. This value may change.	30 Hz	80 Hz
6	Reverse run (P2: RX)	118	The default is RX. This value may change.	FX	FX

Potentiometer (Volume) + Run/Stop via FX/RX + Accel/Decel Time Change

Operation Condition

Operation Command :

Run/Stop via FX/RX

Frequency Command :

$0 \sim 60 \mathrm{~Hz}$ analog input via potentiometer

Accel/Decel Time :

Accel-10sec, Decel-20sec

Wiring

Potentiometer 1~5kohm, 1/2W

$0 \sim 60 \mathrm{~Hz}$

1. Please make sure that R, S, T are connected to 3 phase $A C$ input, and $\mathrm{U}, \mathrm{V}, \mathrm{W}$ are also motor connection terminals.
2. After supplying the power, please set the frequency of multi-step among Low, Middle, and High.
3. If P1 (FX) turns on, the motor operates in forward. And after turning off, it stops according to the deceleration time.
4. If P2 (RX) turns on, the motor operates in reverse. And after turning off, it stops according to the deceleration time.
5. Control the motor's speed via potentiometer.

Parameter Setting

Step	Command	Code	Description	Default	After Change
1	Operation command (DRV group)	Drv	Turn on/off motor via terminal.	1 (FX/RX-1)	1 (FX/RX-1)
2	Analog input (DRV group)	Frq	Change keypad command to analog voltage command.	0 (Keypad-1)	3 (V1: 0~10V)
3	Accel/Decel time (DRV group)	ACC dEC	Set Accel time to 10 sec in ACC Set Decel time to 20 sec in dEC.	5 sec (Accel) 10sec (Decel)	10 sec (Accel) 20sec (Decel)
4	Forward run (P1: FX)	117	The default is FX. This value may change	Fx	Fx
5	Reverse run (P2: RX)	118	The default is RX. This value may change.	Rx	Rx

Dimensions

SV004iG5A-1 SV004iG5A-2 / SV008iG5A-2, SV004iG5A-4 / SV008iG5A-4

Drive Model	(kW)	W (mm)	W1 (mm)	H (mm)	H1 (mm)	D (mm)	Ф	A (mm)	B (mm)	(kg)
SV004iG5A-1	0.4	70	65.5	128	119	130	4.0	4.5	4.0	0.76
SV004iG5A-2	0.4	70	65.5	128	119	130	4.0	4.5	4.0	0.76
SV008iG5A-2	0.75	70	65.5	128	119	130	4.0	4.5	4.0	0.77
SV004iG5A-4	0.4	70	65.5	128	119	130	4.0	4.5	4.0	0.76
SV008iG5A-4	0.75	70	65.5	128	119	130	4.0	4.5	4.0	0.77

SV008iG5A-1 / SV015iG5A-2 / SV015iG5A-4

$\mathrm{mm}(\mathrm{inches})$										
Drive Model	(kW)	$\mathrm{W}(\mathrm{mm})$	$\mathrm{W} 1(\mathrm{~mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{H} 1(\mathrm{~mm})$	$\mathrm{D}(\mathrm{mm})$	Φ	$\mathrm{A}(\mathrm{mm})$	$\mathrm{B}(\mathrm{mm})$	(kg)
SV015iG5A-1	0.75	100	95.5	128	120	130	4.5	4.5	4.5	1.12
SV015iG5A-2	1.5	100	95.5	128	120	130	4.5	4.5	4.5	1.12
SV015iG5A-4	1.5	100	95.5	128	120	130	4.5	4.5	4.5	1.12

SV015iG5A-1 / SV022iG5A-2 / SV037iG5A-2 / SV040iG5A-2, SV022iG5A-4 / SV037iG5A-4 / SV040iG5A-4

Drive Model	(kW)	W (mm)	W1 (mm)	H (mm)	H1 (mm)	D (mm)	Φ	A (mm)	B (mm)	(kg)
SV015iG5A-1	1.5	140	132	128	120.5	155	4.5	4.5	4.5	1.84
SV022iG5A-2	2.2	140	132	128	120.5	155	4.5	4.5	4.5	1.84
SV037iG5A-2	3.7	140	132	128	120.5	155	4.5	4.5	4.5	1.89
SV040iG5A-2	4.0	140	132	128	120.5	155	4.5	4.5	4.5	1.89
SV022iG5A-4	2.2	140	132	128	120.5	155	4.5	4.5	4.5	1.84
SV037iG5A-4	3.7	140	132	128	120.5	155	4.5	4.5	4.5	1.89
SV040iG5A-4	4.0	140	132	128	120.5	155	4.5	4.5	4.5	1.89

SV055iG5A-2 / SV075iG5A-2, SV055iG5A-4 / SV075iG5A-4

m (inches)										
Drive Model	(kW)	$\mathrm{W}(\mathrm{mm})$	$\mathrm{W} 1(\mathrm{~mm})$	$\mathrm{H}(\mathrm{mm})$	$\mathrm{H} 1(\mathrm{~mm})$	$\mathrm{D}(\mathrm{mm})$	Φ	$\mathrm{A}(\mathrm{mm})$	$\mathrm{B}(\mathrm{mm})$	(kg)
SV055iG5A-2	5.5	180	170	220	210	170	4.5	5	4.5	3.66
SV075iG5A-2	7.5	180	170	220	210	170	4.5	5	4.5	3.66
SV055iG5A-4	5.5	180	170	220	210	170	4.5	5	4.5	3.66
SV075iG5A-4	7.5	180	170	220	210	170	4.5	5	4.5	3.66

Dimensions

SV110iG5A-2 / SV150iG5A-2 / SV110iG5A-4 / SV150iG5A-4

Drive Model	(kW)	W (mm)	W1 (mm)	H (mm)	H1 (mm)	D (mm)	Ф	A (mm)	B (mm)	(kg)
SV110iG5A-2	11.0	235	219	320	304	189.5	7.0	8.0	7.0	9.00
SV150iG5A-2	15.0	235	219	320	304	189.5	7.0	8.0	7.0	9.00
SV110iG5A-4	11.0	235	219	320	304	189.5	7.0	8.0	7.0	9.00
SV150iG5A-4	15.0	235	219	320	304	189.5	7.0	8.0	7.0	9.00

SV0185iG5A-2 / SV0220iG5A-2 / SV0185iG5A-4 / SV0220iG5A-4

mm (inches)

Drive Model	(kW)	W (mm)	W1 (mm)	H (mm)	H1 (mm)	D(mm)	Φ	A (mm)	B (mm)
SV185iG5A-2	18.5	260	240	410	392	208.5	10.0	10.0	10.0
SV220iG5A-2	22.0	260	240	410	392	208.5	10.0	10.0	10.0
SV185iG5A-4	18.5	260	240	410	392	208.5	10.0	10.0	10.0
SV220iG5A-4	22.0	260	240	410	392	208.5	10.0	10.0	10.0

Braking Resistors

1) The wattage is based on

Enable Duty (\%ED)
with continuous braking time 15 sec .

Voltage	Drive	100\% braking		150\% braking	
		Resistor [Ω]	Watt [W] ${ }^{11}$	Resistor [Ω]	Watt [W] ${ }^{11}$
200V Series	0.4	400	50	300	100
	0.75	200	100	150	150
	1.5	100	200	60	300
	2.2	60	300	50	400
	3.7	40	500	33	600
	5.5	30	700	20	800
	7.5	20	1,000	15	1,200
	11.0	15	1,400	10	2,400
	15.0	11	2,000	8	2,400
	18.5	9	2,400	5	3,600
	22.0	8	2,800	5	3,600
400V Series	0.4	1,800	50	1,200	100
	0.75	900	100	600	150
	1.5	450	200	300	300
	2.2	300	300	200	400
	3.7	200	500	130	600
	5.5	120	700	85	1,000
	7.5	90	1,000	60	1,200
	11.0	60	1,400	40	2,000
	15.0	45	2,000	30	2,400
	18.5	35	2,400	20	3,600
	22.0	30	2,800	20	3,600

Breakers

Note) 1. The capacity of the MCCB should be 1.5 to 2 times the rated output current of the drive. 2. Use an MCCB keep the drive from faulting out instead of using overheat protection 150% for one minute at the rated output current.)
3. In case magnetic contactor is used on single-phase product, wire R and T phases.

Fuses \& AC Reactors

Model	AC External Fuse		AC Reactor	DC Reactor
	Current [A]	Voltage [V]		
004iG5A-1	10 A	600 V	$4.20 \mathrm{mH}, 3.5 \mathrm{~A}$	-
008iG5A-1	10 A	600 V	$2.13 \mathrm{mH}, 5.7 \mathrm{~A}$	-
015iG5A-1	15 A	600 V	$1.20 \mathrm{mH}, 10 \mathrm{~A}$	-
004iG5A-2	10 A	600 V	$4.20 \mathrm{mH}, 3.5 \mathrm{~A}$	-
008iG5A-2	10 A	600 V	$2.13 \mathrm{mH}, 5.7 \mathrm{~A}$	-
015iG5A-2	15 A	600 V	$1.20 \mathrm{mH}, 10 \mathrm{~A}$	-
022iG5A-2	25 A	600 V	$0.88 \mathrm{mH}, 14 \mathrm{~A}$	-
037iG5A-2	30 A	600 V	$0.56 \mathrm{mH}, 20 \mathrm{~A}$	-
040iG5A-2	30 A	600 V	$0.56 \mathrm{mH}, 20 \mathrm{~A}$	-
055iG5A-2	30 A	600 V	$0.39 \mathrm{mH}, 30 \mathrm{~A}$	-
075iG5A-2	50 A	600 V	$0.28 \mathrm{mH}, 40 \mathrm{~A}$	-
110iG5A-2	70 A	600 V	$0.20 \mathrm{mH}, 59 \mathrm{~A}$	$0.74 \mathrm{mH}, 56 \mathrm{~A}$
150iG5A-2	100 A	600 V	$0.15 \mathrm{mH}, 75 \mathrm{~A}$	$0.57 \mathrm{mH}, 71 \mathrm{~A}$
185iG5A-2	100 A	600 V	$0.12 \mathrm{mH}, 96 \mathrm{~A}$	$0.49 \mathrm{mH}, 91 \mathrm{~A}$
220iG5A-2	125 A	600 V	$0.10 \mathrm{mH}, 112 \mathrm{~A}$	$0.42 \mathrm{mH}, 107 \mathrm{~A}$
004iG5A-4	5 A	600 V	18.0 mH, 1.3 A	-
008iG5A-4	10 A	600 V	$8.63 \mathrm{mH}, 2.8 \mathrm{~A}$	-
015iG5A-4	10 A	600 V	$4.81 \mathrm{mH}, 4.8 \mathrm{~A}$	-
022iG5A-4	10 A	600 V	$3.23 \mathrm{mH}, 7.5 \mathrm{~A}$	-
037iG5A-4	20 A	600 V	$2.34 \mathrm{mH}, 10 \mathrm{~A}$	-
040iG5A-4	20 A	600 V	$2.34 \mathrm{mH}, 10 \mathrm{~A}$	-
055iG5A-4	20 A	600 V	$1.22 \mathrm{mH}, 15 \mathrm{~A}$	-
075iG5A-4	30 A	600 V	$1.14 \mathrm{mH}, 20 \mathrm{~A}$	-
110iG5A-4	35 A	600 V	$0.81 \mathrm{mH}, 30 \mathrm{~A}$	$2.76 \mathrm{mH}, 29 \mathrm{~A}$
150iG5A-4	45 A	600 V	$0.61 \mathrm{mH}, 38 \mathrm{~A}$	$2.18 \mathrm{mH}, 36 \mathrm{~A}$
185iG5A-4	60 A	600 V	$0.45 \mathrm{mH}, 50 \mathrm{~A}$	$1.79 \mathrm{mH}, 48 \mathrm{~A}$
220iG5A-4	70 A	600 V	$0.39 \mathrm{mH}, 58 \mathrm{~A}$	$1.54 \mathrm{mH}, 55 \mathrm{~A}$

Drive Group

$\begin{aligned} & \text { LED } \\ & \text { Display } \end{aligned}$	Address for Communication	Parameter Name	Min/Max Range	Description			Factory Defaults	Adj. during Run
0.00	A100	[Frequency command]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	This parameter sets the frequency that the drive is commanded to output. During stop: frequency command During eun: output frequency During multi-step operation: Multi-step frequency 0 . It cannot be set greater than F21- [Max frequency].			0.00	0
ACC	A101	[Accel time]	$\begin{gathered} 0 \sim 6000 \\ {[\mathrm{Sec}]} \end{gathered}$	During multi-accel/decel operation, this parameter serves as accel/decel time 0 .			5.0	0
dEC	A102	[Dacel time]					10.0	0
drv	A103	[Drive mode]	0~3	0	Run/stop via run/Stop	key on the keypad	1	X
					Terminal operation	FX: Motor forward run		
						RX: Motor reverse run		
				2		FX: Run/Stop enable		
						RX: Reverse rotation select		
				3	RS485 communicati			
				4	Set to Field Bus com	unication 1]		
Frq	A104	[Frequency setting method]	0~7	0		Keypad setting 1	0	X
				1	Digit	Keypad setting 2		
				2	Analog	V1 1: -10~+10 [V]		
				3		V1 2: $0 \sim+10$ [V]		
				4		Terminal I: $0 \sim 20[m A]$		
				5		Terminal V1 setting $1+$ Terminal I		
				6		Terminal V1 setting $2+$ Terminal 1		
				7	RS485 communication			
				8	Digital volume			
				9	Set to field bus communication ${ }^{11}$			
St1	A105	[Multi-step frequency 1]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets multi-step frequency 1 during multi-step operation.			10.00	0
St2	A106	[Multi-step frequency 2]		Sets multi-step frequency 2 during multi-step operation.			20.00	0
St3	A107	[Multi-step frequency 3]		Sets multi-step frequency 3 during multi-step operation.			30.00	0
Cur	A108	[Output current]		Displays the output current to the motor.			-	-
rPM	A109	[Motor RPM]		Displays the number of Motor RPM.			-	-
dCL	A10A	[Drive DC link voltage]		Displays DC link voltage inside the drive.			-	-
vOL	A10B	[User display select]		This parameter displays the item selected at H73- [Monitoring item select].			vOL	-
				vOL	Output voltage			
				POr	Output power			
				tOr	Torque			

[^4]Function List

Drive Group

LED Display	Address for Communication	Parameter Name	Min/Max Range	Description			Factory Defaults	Adj. during Run
nOn	A10C	[Fault display]		Displays the types of faults, frequency and operating status at the time of the fault			-	-
drC	A10D	[Direction of motor rotation select]	F, r	Sets the direction of motor rotation when drv - [Drive mode] is set to either 0 or 1 .			F	0
				F	Forward			
				r	Reverse			
drv2	A10E	[Drive mode 2]	0~3	0	Run/stop via run/st	key on the keypad	10	X
					Terminal operation	FX: Motor forward run		
						RX: Motor reverse run		
				2		FX: Run/Stop enable		
						RX: Reverse rotation select		
				3	RS-485 communication			
				4	Set to filed bus communication ${ }^{3 /}$			
Frq2 ${ }^{11}$	A10F	[Frequency setting method 2]	$0 \sim 7$	0	Digital	Keypad setting 1	00	X
				1		Keypad setting 2		
				2	Analog	V1 1: -10~+10 [V]		
				3		V1 2: $0 \sim+10$ [V]		
				4		Terminal I: $0 \sim 20$ [mA]		
				5		Terminal V1 setting $1+$ Terminal I		
				6		Terminal V1 setting $2+$ Terminal I		
				7	RS485 communication			
				8	Digital Volume			
				9	Set to filed bus communication ${ }^{31}$			
rEF ${ }^{2)}$	A110	PID control standard value setting	$0 \sim 400[\mathrm{~Hz}]$ or $0 \sim 100 \text { [\%] }$	If H 58 is 0 , it is expressed as a $[\mathrm{Hz}]$ unit. If H 58 is 1 , it is expressed as a [\%] unit. $\ln [\mathrm{Hz}]$ unit, you can't set max. frequency more than (F21). In [\%] unit, 100\% means max. frequency.			0.00	0
Fbk ${ }^{21}$	A111	PID control feedback amount		It indicates a feedback amount in PID control. If H 58 is 0 , it is expressed as a [Hz] unit. If H58 is 1 , it is expressed as a [\%] unit.			-	-

1) Only displayed when one of the Multi-function input terminals $1-8$ [117~|24] is set to " 22 ".
2) It is indicated when H49(PID control selection) is 1.
3) This function can be available with iG5A Communication Option Module.

Function group 1

LED Display	Address for Communication	Parameter Name	Min/Max Range		Description	Factory Defaults	Adj. during Run
FO	A200	[Jump code]	$0 \sim 71$	Sets the parameter code number to jump		1	0
F1	A201	[Forward/ Reverse run disable]	0~2	0	Fwd and rev run enable	0	X
				1	Forward run disable		
				2	Reverse run disable		
F2	A202	[Accel pattern]	$0 \sim 1$	0	Linear	0	X
F3	A203	[Decel pattern]		1	S-curve		

Function Group 1

$\begin{aligned} & \text { LED } \\ & \text { Display } \end{aligned}$	Address for Communication	Parameter Name	Min/Max Range	Description		Factory Defaults	Adj. during Run
F4	A204	[Stop mode select]	$0 \sim 3$	0	Decelerate to stop	0	X
				1	DC brake to stop		
				2	Free run to stop		
				3	Power braking stop		
F81)	A208	[DC Brake start frequency]	$\begin{gathered} 0.1 ~ 60 \\ {[\mathrm{~Hz}]} \end{gathered}$	This parameter sets DC brake start frequency. It cannot be set below F23-[Start frequency].		5.00	X
F9	A209	[DC Brake wait time]	$\begin{aligned} & 0 \sim 60 \\ & {[\mathrm{sec}]} \end{aligned}$	When DC brake frequency is reached, the drive holds the output for the setting time before starting DC brake.		0.1	X
F10	A20A	[DC Brake voltage]	$\begin{gathered} 0 \underset{[\%]}{\sim} 200 \\ \hline\left[{ }^{2}\right. \end{gathered}$	This parameter sets the amount of DC voltage applied to a motor. It is set in percent of H 33 - [Motor rated current].		50	X
F11	A20B	[DC Brake time]	$\begin{aligned} & 0 \sim 60 \\ & {[\mathrm{sec}]} \end{aligned}$	This parameter sets the time taken to apply DC current to a motor while motor is at a stop.		1.0	X
F12	A20C	[DC Brake start voltage]	$\begin{gathered} 0 \sim 200 \\ {[\%]} \end{gathered}$	This parameter sets the amount of $D C$ voltage before a motor starts to run. It is set in percent of H33- [Motor rated current].		50	X
F13	A20D	[DC Brake start time]	$\begin{aligned} & 0 \sim 60 \\ & {[\mathrm{sec}]} \end{aligned}$	DC voltage is applied to the motor for DC Brake start time before motor accelerates.		0	X
F14	A20E	[Time magnetizing a motor]	$\begin{gathered} 0 \sim 60 \\ {[\mathrm{sec}]} \end{gathered}$	This parameter applies the current to a motor for the set time before motor accelerates during Sensorless vector control.		0.1	X
F20	A214	[Jog frequency]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	This parameter sets the frequency for Jog operation. It cannot be set above F21- [Max frequency].		10.00	0
F21 ${ }^{21}$	A215	[Max frequency]	$\begin{gathered} 40 \sim 400 \\ {[H z]} \end{gathered}$	This parameter sets the highest frequency the drive can output. It is frequency reference for Accel/Decel (See H70)		60.00	X
				Any frequency cannot be set above Max frequency except Base frequency			
F22	A216	[Base frequency]	$\begin{gathered} 30 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	The drive outputs its rated voltage to the motor at this frequency (see motor nameplate).		60.00	X
F23	A217	[Start frequency]	$\begin{gathered} 0.1 \sim 10 \\ {[\mathrm{~Hz}]} \end{gathered}$	The drive starts to output its voltage at this frequency. It is the frequency low limit.		0.50	X
F24	A218	[Frequency high low limit select]	0~1	This parameter sets high and low limit of run frequency.		0	X
F25 ${ }^{3}$	A219	[Frequency high limit]	$\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$	This parameter sets high limit of the run frequency. It cannot be set above F21- [Max frequency].		60.00	X
F26	A21A	[Frequency low limit]	$\begin{gathered} 0.1 \sim 400 \\ {[H z]} \end{gathered}$	This parameter sets low limit of the run frequency. It cannot be set above F25-[Frequency high limit] and below F23-[Start frequency].		0.05	X
F27	A21B	[Torque Boost select]	0~1	0	Manual torque boost	0	X
				1	Auto torque boost		
F28	A21C	[Torque boost in forward direction]	$\begin{gathered} 0 \sim 15 \\ {[\%]} \end{gathered}$	This parameter sets the amount of torque boost applied to a motor during forward run. It is set in percent of Max output voltage. This parameter sets the amount of torque boost applied to a motor during reverse run. It is set as a percent of Max output voltage.		2	X
F29	A21D	[Torque boost in reverse direction]				2	X

[^5]
Function Group 1

$\begin{gathered} \text { LED } \\ \text { Display } \end{gathered}$	Address for Communication	Parameter Name	Min/Max Range		Description	Factory Defaults	Adj. during Run
F30	A21E	[V/F pattern]	0~2	0	\{Linear\}	0	X
				1	\{Square\}		
				2	\{User V/F\}		
F311]	A21F	[User V/F frequency 1]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	It is used only when V/F pattern is set to 2(User V/F) It cannot be set above F21 - [Max frequency].		15,00	X
F32	A220	[User V/F] voltage 1	$\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$	The value of voltage is set in percent of H 70 - [Motor rated voltage]. The values of the lower-numbered parameters cannot be set above those of higher-numbered.		25	X
F33	A221	[User V/F frequency 2]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$			30.00	X
F34	A222	[User V/F voltage 2]	$\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$			50	X
F35	A223	[User V/F frequency 3]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$			45.00	X
F36	A224	[User V/F voltage 3]	$\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$			75	X
F37	A225	[User V/F frequency 4]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$			60.00	X
F38	A226	[User V/F voltage 4]	$\begin{gathered} 0 \sim 100 \\ {[\%]} \end{gathered}$			100	X
F39	A227	[Output voltage adjustment]	$\begin{gathered} 40 \sim 110 \\ {[\%]} \end{gathered}$	This parameter adjusts the amount of output voltage. The set value is the percentage of input voltage.		100	X
F40	A228	[Energy-saving level]	$\begin{gathered} 0 \sim 30 \\ {[\%]} \end{gathered}$	This parameter decreases output voltage according to load status.		0	0
F50	A232	[Electronic thermal select]	0~1	This parameter is activated when the motor is overheated (time-inverse).		0	0
F51 ${ }^{21}$	A233	[Electronic thermal level for 1 minute]	$\begin{gathered} 50 \sim 200 \\ {[\%]} \end{gathered}$	This parameter sets max current capable of flowing to the motor continuously for 1 minute. The set value is the percentage of H 33 - [Motor rated current]. It cannot be set below F52-[Electronic thermal level for continuous].		150	0
F52	A234	[Electronic thermal level for continuous]	$\begin{gathered} 50 ~ 150 \\ {[\%]} \end{gathered}$	This parameter sets the amount of current to keep the motor running continuously. It cannot be set higher than F51-[Electronic thermal level for 1 minute].		100	0
F53	A235	[Motor cooling method]	0~1	0	Standard motor having cooling fan directly connected to the shaft	0	0
				1	A motor using a separate motor to power a cooling fan.		
F54	A236	[Overload warning level]	$\begin{gathered} 30 \sim 150 \\ {[\%]} \end{gathered}$	This parameter sets the amount of current to issue an alarm signal at a relay or multi-function output terminal (see 154, 155). The set value is the percentage of H 33 - [Motor rated current].		150	0
F55	A237	[Overload warning time]	$\begin{aligned} & 0 \sim 30 \\ & {[\mathrm{Sec}]} \end{aligned}$	This than [Ove	ameter issues an alarm signal when the current greater 4 - [Overload warning level] flows to the motor for F55- ad warning time].	10	0

[^6]
Function Group 1

LED Display	Address for Communication	Parameter Name	Min/Max Range	Description				Factory Defaults	Adj. during Run
F56	A238	[Overload trip select]	0~1	This parameter turns off the drive output when motor is overloaded.				1	0
F57	A239	[Overload trip level]	$\begin{gathered} 30 \sim 200 \\ {[\%]} \end{gathered}$	This parameter sets the amount of overload current. The value is the percentage of H33- [Motor rated current].				180	0
F58	A23A	[Overload trip time]	$\begin{aligned} & 0 \sim 60 \\ & {[\mathrm{Sec}]} \end{aligned}$	This parameter turns off the drive output when the F57[Overload trip level] of current flows to the motor for F58[Overload trip time].				60	0
F59	A23B	[Stall prevention select]	$0 \sim 7$	This parameter stops accelerating during acceleration, decelerating during constant speed run and stops decelerating during deceleration.				0	X
					During decel	During constant run	During accel		
					Bit 2	Bit 1	Bit 0		
				0	-	-	-		
				1	-	-	\checkmark		
				2	-	\checkmark	-		
				3	-	\checkmark	\checkmark		
				4	\checkmark	-	-		
				5	\checkmark	-	\checkmark		
				6	\checkmark	\checkmark	-		
				7	\checkmark	\checkmark	\checkmark		
F60	A23C	[Stall prevention level]	$\begin{gathered} 30 ~ 200 \\ {[\%]} \end{gathered}$	This parameter sets the amount of current to activate stall prevention function during Accel, Constant or decel run. The set value is the percentage of the H33- [Motor rated current].				150	X
F61 ${ }^{11}$	A23D	[When Stall prevention during deceleration, voltage limit select	0~1	In Stall prevention run during deceleration, if you want to limit output voltage, select 1					
F63	A23F	[Save up/down frequency select]	0~1	This parameter decides whether to save the specified frequency during up/down operation. When 1 is selected, the up/down frequency is saved in F64.				0	X
F64 ${ }^{21}$	A240	[Save up/down frequency]		If 'Save up/down frequency' is selected at F63, this parameter saves the frequency before the drive stops or decelerated.				0.00	X
F65	A241	[Up-down mode select]	0~2	We can select up-down mode among three thing				0	X
				0	Increases g frequency/M	requency as a stand equency	ard of Max.		
				1	Increases as m	as step frequency acco	ding to edge input		
				2	Available to	ine 1 and 2			
F66	A242	[Up-down step frequency]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	In case of choosing F65 as a 1 or 2, it means increase or decrease of frequency according to up-down input				0.00	X
F70	A246	[Draw run mode select]	0~3	0	Drive doesn't	as a draw mode		0	X
				1	V 1 (0~10V) inp	aw run			
				2	$1(0 \sim 20 \mathrm{~mA})$ inp	raw run			
				3	V1(-10~10V)	draw run			
F71	A247	[Draw rate]	$0 \sim 100[\%]$		rate of draw			0.00	0

[^7]
Function Group 2

$\begin{aligned} & \text { LED } \\ & \text { Display } \end{aligned}$	Address for Communication	Parameter Name	Min/Max Range	Description				Factory Defaults	Adj. during Run
H0	A300	[Jump code]	0~95	Sets the code number to jump.				1	0
H1	A301	[Fault history 1]	-	Stores information on the types of faults, the frequency, the current and the Accel/Decel condition at the time of fault. The latest fault is automatically stored in the H 1- [Fault history 1].				nOn	-
H2	A302	[Fault history 2]	-					nOn	-
H3	A303	[Fault history 3]	-					nOn	-
H4	A304	[Fault history 4]	-					nOn	-
H5	A305	[Fault history 5]	-					nOn	-
H6	A306	[Reset fault history]	0~1	Clears the fault history saved in H 1-5.				0	0
H7	A307	[Dwell frequency]	$\begin{gathered} 0.1 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	When run frequency is issued, motor starts to accelerate after dwell frequency is applied to the motor during H8- [Dwell time]. [Dwell frequency] can be set within the range of F21- [Max frequency] and F23- [Start frequency].				5.00	X
H8	A308	[Dwell time]	$0 \sim 10$ [sec]	Sets the time for dwell operation.				0.0	X
H10	A30A	[Skip frequency select]	0~1	Sets the frequency range to skip to prevent undesirable resonance and vibration on the structure of the machine.				0	X
H1111	A30B	[Skip frequencylow limit 1]	$\begin{gathered} 0.1 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Run frequency cannot be set within the range of H 11 thru H 16 . The frequency values of the low numbered parameters cannot be set above those of the high numbered ones. Settable within the range of F21 and F23.				10.00	X
H12	A30C	[Skip frequency high limit 1]						15.00	X
H13	A30D	[Skip frequency low limit 2]						20.00	X
H14	A30E	[Skip frequency high limit 2]						25.00	X
H15	A30F	[Skip frequency low limit 3]						30.00	X
H16	A310	[Skip frequency high limit 3]						35.00	X
H17	A311	[S-Curve accel/ decel start side]	$\begin{gathered} 1 \sim 100 \\ {[\%]} \end{gathered}$	Set the speed reference value to form a curve at the start during accel/decel. If it is set higher, linear zone gets smaller.				40	X
H18	A312	[S-Curve accel/ decel end side]	$\begin{gathered} 1 \sim 100 \\ {[\%]} \end{gathered}$	Set the speed reference value to form a curve at the end during accel/decel. If it is set higher, linear zone gets smaller.				40	X
H19	A313	[Input/output	0~3	0	Disabled	1	Output phase protection	0	0
		phase loss protection select]		2	Input phase protection	3	Input/output phase protection		
H2O	A314	[Power On Start select]	0~1	This parameter is activated when drv is set to 1 or 2 (Run/Stop via Control terminal). Motor starts acceleration after AC power is applied while FX or RX terminal is ON .				0	0
H21	A315	[Restart after fault reset selection]	0~1	This parameter is activated when drv is set to 1 or 2 (Run/Stop via Control terminal). Motor accelerates after the fault condition is reset while the FX or RX terminal is ON .				0	0

1) only displayed when H 10 is set to 1 . \# H17, H18 are used when F2, F3 are set to 1 (S-curve)

Function Group 2

[^8]
Function Group 2

LED Display	Address for Communication	Parameter Name	Min/Max Range	Description	Factory Defaults	Adj. during Run
H32	A320	[Rated slip frequency]	$\begin{gathered} 0 \sim 10 \\ {[\mathrm{~Hz}]} \end{gathered}$	$\mathrm{fs}=\mathrm{fr}-\left[\frac{\mathrm{rpmX} \mathrm{p}}{120}\right]$ Where, $\mathrm{fs}=$ Rated slip frequency $\mathrm{fr}=$ Rated frequency rpm = Motor nameplate RPM p = Number of Motor poles	$2.33{ }^{11}$	X
H33	A321	[Motor rated current]	$\begin{gathered} 0.5 \text { ~ } 150 \\ {[\mathrm{~A}]} \end{gathered}$	Enter motor rated current on the nameplate.	26.3	X
H34	A322	[N o load motor current]	$\begin{gathered} 0.1 ~ 50 \\ {[A]} \end{gathered}$	Enter the current value detected when the motor is rotating in rated rpm after the load connected to the motor shaft is removed. Enter the 50% of the rated current value when it is difficult to measure H34-[No load motor current].	11	X
H36	A324	[Motor efficiency]	$\begin{gathered} 50 \sim 100 \\ {[\%]} \end{gathered}$	Enter the motor efficiency (see motor nameplate).	87	X
H37	A325	[Load inertia rate]	0~2	Select one of the following according to motor inertia.	0	X
				0 Less than 10 times		
				1 About 10 times		
				2 More than 10 times		
H39	A327	[Carrier frequency select]	$\begin{aligned} & 1 \sim 15 \\ & {[\mathrm{kHz}]} \end{aligned}$	This parameter affects the audible sound of the motor, noise emission from the drive, drive temp, and leakage current. If the set value is higher, the drive sound is quieter but the noise from the drive and leakage current will become greater.	3	0
H40	A328	[Control mode select]	0~3	0 \{Volts/frequency control\}	0	X
				1 \{Slip compensation control\}		
				3 \{Sensorless vector control\}		
H41	A329	[Auto tuning]	0~1	If this parameter is set to 1 , it automatically measures parameters of the H42 and H44.	0	X
H42	A32A	[Stator resistance (Rs)]	$\begin{gathered} 0 \sim 28 \\ {[\Omega]} \end{gathered}$	This is the value of the motor stator resistance.	-	X
H44	A32C	[Leakage inductance (Lo)]	$\begin{gathered} 0 \sim 300.0 \\ {[\mathrm{mH}]} \end{gathered}$	This is leakage inductance of the stator and rotor of the motor.	-	X
H45 ${ }^{21}$	A32D	[Sensorless P gain]	0~32767	P gain for sensorless control	1000	0
H46	A32E	[Sensorless I gain]		I gain for sensorless control	100	0
H47	A32F	[Sensorless torque limit]	$\begin{gathered} 100 \sim 220 \\ {[\%]} \end{gathered}$	Limits output torque in sensorless mode.	180.0	X
H48	A330	PWM mode select	$0 \sim 1$	If you want to limit a drive leakage current, select 2 phase PWM mode.	0	X
				0 Normal PWM mode		
				12 phase PWM mode		
H49	A331	PID select	0~1	Selects whether using PID control or not	0	X

[^9]
Function Group 2

LED Display	Address for Communication	Parameter Name	Min/Max Range		Description	Factory Defaults	Adj. during Run
H50 ${ }^{11}$	A332	[PID F/B select]	0~1	0	Terminal l input ($0 \sim 20 \mathrm{~mA}$)	0	X
				1	Terminal V1 input ($0 \sim 10 \mathrm{~V}$)		
H51	A333	[P gain for PID]	$\begin{gathered} 0 \sim 999.9 \\ {[\%]} \end{gathered}$	This parameter sets the gains for the PID controller.		300.0	0
H52	A334	[Integral time for PID	$\begin{gathered} 0.1 \sim 32.0 \\ {[\mathrm{sec}]} \end{gathered}$			1.0	0
H53	A335	[Differential time for PID (D gain)]	$\begin{gathered} 0 \sim 30.0 \\ {[\mathrm{sec}]} \end{gathered}$			0.0	0
H54	A336	[PID control mode select]	0~1	Selects PID control mode		0	X
				0	Normal PID control		
				1	Process PID control		
H55	A337	[PID output frequency high limit]	$\begin{gathered} 0.1 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	This parameter limits the amount of the output frequency through the PID control. The value is settable within the range of F21? [Max frequency] and F23- [Start frequency].		60.00	0
H56	A338	[PID output frequency low limit]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$			0.50	0
H57	A339	[PID standard value select]	0~4	Selects PID standard value. Standard value is indicated in "rEF" of drive group.		0	X
				0	Loader digital setting 1		
				1	Loader digital setting 2		
				2	V1 terminal setting 2: 0~10V		
				3	I terminal setting: 0~20mA		
				4	Setting as a RS-485 communication		
H58	A33A	PID control unit select	$0 \sim 1$	Selects a unit of the standard value or feedback amount.		0	X
				0	Frequency[Hz]		
				1	Percentage[\%]		
H59	A33B	PID Output Inverse	0~1	Select the output direction of PID control.		0	X
				0	No		
				1	Yes		
H6O	A33C	[Self-diagnostic select]	0~3	0	Self-diagnostic disabled	0	X
				1	IGBT fault/Ground fault		
				2	Output phase short \& open/ Ground fault		
				3	Ground fault (This setting is unable when more than 11 kW)		
H61 ${ }^{21}$	A33D	[Sleep delay time]	$0 \sim 2000[s]$	Sets a sleep delay time in PID drive.		60.0	X
H62	A33E	[Sleep frequency]	$0 \sim 400[\mathrm{~Hz}]$	Sets a sleep frequency when executing a sleep function in PID			
				Control drive.		0.00	0
				You can't set more than Max. frequency(F21)			
H63	A33F	[Wake up level]	0~100[\%]		wake up level in PID control drive.	35.0	0
H64	A340	[KEB drive select]	0~1		KEB drive.	0	X
H65	A341	[KEB action start level]	$\begin{gathered} 110 \sim 140 \\ {[\%]} \\ \hline \end{gathered}$		KEB action start level according to level.	125.0	X
H66	A342	[KEB action stop level]	$\begin{gathered} 110 \sim 145 \\ {[\%]} \\ \hline \end{gathered}$		KEB action stop level according to level.	130.0	X
H67	A343	[KEB action gain]	1~20000		EB action gain.	1000	X

[^10]
Function Group 2

$\begin{gathered} \text { LED } \\ \text { Display } \end{gathered}$	Address for Communication	Parameter Name	Min/Max Range	Description		Factory Defaults	Adj. during Run
H70	A346	[Frequency reference for accel/Decel]	0~1	0	Based on Max freq (F21)	0	X
				1	Based on Delta freq.		
H71	A347	[Accel/Decel time scale]	0~2	0	Settable unit: 0.01 second.	1	0
				1	Settable unit: 0.1 second.		
				2	Settable unit: 1 second.		
H72	A348	[Power on display]	$0 \sim 15$	This parameter selects the parameter to be displayed on the keypad when the input power is first applied.		0	0
				0	Frequency command		
				1	Accel time		
				2	Decel time		
				3	Drive mode		
				4	Frequency mode		
				5	Multi-Step frequency 1		
				6	Multi-Step frequency 2		
				7	Multi-Step frequency 3		
				8	Output current		
				9	Motor rpm		
				10	Drive DC link voltage		
				11	User display select (H73)		
				12	Fault display		
				13	Direction of motor rotation select		
				14	Output current 2		
				15	Motor rpm 2		
				16	Drive DC link voltage 2		
				17	User display select 2		
H73	A349	[Monitoring item select]	0~2	One of the following can be monitored via vOL - [User display select]		0	0
				0	Output voltage [V]		
				1	Output power [kW]		
				2	Torque [kgf, m]		
H74	A34A	[Gain for motor rpm display]	$\begin{gathered} 1 \sim 1000 \\ {[\%]} \end{gathered}$	This parameter is used to change the motor rotating speed (r/min) to mechanical speed (m / mi) and display it.		100	0
H75	A34B	[DB resistor operating rate limit select]	0~1	0	Unlimited	1	0
				1	Use DB resistor for the H76 set time.		
H76	A34C	[DB resistor operating rate]	$\begin{gathered} 0 \sim 30 \\ {[\%]} \end{gathered}$	Set the percent of DB resistor operating rate to be activated during one sequence of operation.		10	0
H77 ${ }^{13}$	A34D	[Cooling fan control]	0~2	0	Always ON	0	0
				1	Keeps ON when its temp is higher than drive protection limit temp. Activated only during operation when its temp is below that of drive protection limit.		
				2	Regardless of the operation fan is active when is temp is higher than drive protection limit temp.		

[^11]
Function Group 2

LED Display	Address for Communication	Parameter Name	Min/Max Range	Description			Factory Defaults	Adj. during Run
H78	A34E	[Operating method select when cooling fan malfunctions	0~1	0 1	Continuous operation when cooling fan malfunctions.		0	0
H79	A34F	[S/W version]	$0 \sim 10.0$	This parameter displays the drive software version.			1.0	X
H81 ${ }^{11}$	A351	[2 ${ }^{\text {nd }}$ motor Accel time]	$\begin{gathered} 0 \sim 6000 \\ \text { [eec] } \end{gathered}$	This parameter actives when the selected terminal is ON after $117-124$ is set to 12 \{2 ${ }^{\text {nd }}$ motor select $\}$.			5.0	0
H82	A352	[2 ${ }^{\text {nd }}$ motor decel time]					10.0	0
H83	A353	[2 $2^{\text {nd }}$ moto base frequency]	$\begin{gathered} 30 \sim 400 \\ {[H z]} \end{gathered}$				60.00	X
H84	A354	[2 ${ }^{\text {nd }}$ motor V/F pattern]	0~2				0	X
H85	A355	$\begin{aligned} & \text { [2 } 2^{\text {nd }} \text { motor } \\ & \text { forward } \\ & \text { torque boost] } \end{aligned}$	$\begin{gathered} 0 \sim 15 \\ {[\%]} \end{gathered}$				5	X
H86	A356	$\begin{aligned} & {\left[2^{\text {nd }}\right. \text { motor }} \\ & \text { reverse } \\ & \text { torque boost] } \end{aligned}$					5	X
H87	A347	[2 ${ }^{\text {nd }}$ motor stall prevention level]	$\begin{gathered} 30 \sim 150 \\ {[\%]} \end{gathered}$				150	X
H88	A358	[2nd motor Electronic thermal level for 1 min]	$\begin{gathered} 50 \sim 200 \\ {[\%]} \end{gathered}$				150	0
H89	A359	[2 ${ }^{\text {nd }}$ motor Electronic thermal level for continuous]	$\begin{gathered} 50 \sim 150 \\ {[\%]} \end{gathered}$				100	0
H90	A35A	[2 ${ }^{\text {nd }}$ motor rated current]	$0.1 \text { ~ } 100$ [A]				26.3	X
H91 ${ }^{21}$	A35B	[Parameter read]	0~1	Copy	he parameters fro	ave them into remote loader.	0	X
H92	A35C	[Parameter write]	0~1	Copy	he parameters fro	der and save them into drive.	0	X
H93	A35D	[Parameter initialize]	0~5	This parameter is used to initialize parameters back to the factory default value.			0	X
				0	-			
				1	All parameter	itialized to factory default value.		
				2	Only drive group			
				3	Only function	tialized.		
				4	Only function	tialized.		
				5	Only I/O group			
H94	A35E	[Password register]	$0 \sim$ FFFF		word for H95-[P hexa value.		0	0
H95	A35F	[Parameter lock]	$0 \sim$ FFFF	This parameter is able to lock or unlock parameters by typing password registered in H94.			0	0
					UL (Unlock)	Parameter change enable		
					L (Lock)	Parameter change disable		

1) It is indicated when choosing I17~124 as a 12 (2nd motor select).
2) H91,H92 parameters are displayed when Remote option is installed.

Input/Output Group

LED Display	Address for Communication	Parameter Name	Min/Max Range		Description	Factory Defaults	Adj. during Run
10	A400	[Jump code]	0~87	Sets the code number to jump.		1	0
12	A402	[NV input Min voltage]	$\begin{gathered} 0 \sim 10 \\ {[V]} \end{gathered}$	Sets the minimum voltage of the NV (-10V~0V) input..		0.00	0
13	A403	[Frequency corresponding to 12]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets the drive output minimum frequency at minimum voltage of the NV input.		0.00	0
14	A404	[NV input Max voltage]	$\begin{gathered} 0 \sim 10 \\ {[\mathrm{~V}]} \end{gathered}$	Sets the maximum voltage of the NV input.		10.0	0
15	A405	[Frequency corresponding to 14]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets the drive output maximum frequency at maximum voltage of the NV input		60.00	0
16	A406	[Filter time constant for V1 input]	0~9999	Adjusts the responsiveness of V1 input ($0 \sim+10 \mathrm{~V}$)		10	0
17	A407	[V1 input Min voltage]	$\begin{gathered} 0 \sim 10 \\ {[V]} \end{gathered}$	Sets the minimum voltage of the V1 input.		0	0
18	A408	[Frequency corresponding to 17]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets the drive output minimum frequency at minimum voltage of the V1 input.		0.00	0
19	A409	V1 input Max voltage]	$\begin{gathered} 0 \sim 10 \\ {[V]} \end{gathered}$	Sets the maximum voltage of the V1 input.		10	0
110	A40A	[Frequency corresponding to 19]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets the drive output maximum frequency at maximum voltage of the V1 input.		60.00	0
111	A40B	[Filter time constant for I input]	0~9999	Sets the input section's internal filter constant for I input.		10	0
112	A40C	[I input Min current]	$\begin{aligned} & \hline 0 \sim 20 \\ & {[\mathrm{~mA}]} \end{aligned}$	Sets the minimum current of l input.		4.00	0
113	A40D	[Frequency corresponding to 1 12]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets the drive output minimum frequency at minimum current of I input.		0.00	0
114	A40E	[I input Max current]	$\begin{aligned} & 0 \sim 20 \\ & {[\mathrm{~mA}]} \end{aligned}$	Sets the Maximum current of I input.		20.00	0
115	A40F	[Frequency corresponding to 144	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets the drive output maximum frequency at maximum current of I input.		60.00	0
116	A410	[Criteria for analog Input Signal loss]	0~2	0	Disabled	0	0
				1	activated below half of set value.		
				2	activated below set value.		
117	A411	[Multi-function input terminal P1 define]	$0 \sim 27$	0	Forward run command	0	0
				1	Reverse run command		
118	A412	[Multi-function input terminal P2 define]		2	Emergency stop Trip	1	0
				3	Reset when a fault occurs \{RST\}		
119	A413	[Multi-function input terminal P3 define]		4	Jog operation command	2	0
				5	Multi-Step freq - Low		
120	A414	[Multi-function input terminal P4 define]		6	Multi-Step freq - Mid	3	0
				7	Multi-Step freq - High		

[^12]
Input/Output Group

LED Display	Address for Communication	Parameter Name	Min/Max Range	Description								Factory Defaults	Adj. during Run
121	A415	[Multi-function input terminal P5 define]	8 Multi accel/Decel - Low 9 Multi accel/Decel - Mid									4	0
122	A416	[Multi-function input terminal P6 define]	0~27	10	Multi accel/Decel - High							5	0
				11	DC brake during stop								
123	A417	[Multi-function input terminal P7 define]		12	2nd motor select							6	0
				13	-Reserved-								
124	A418	[Multi-function input terminal		14	-Reserved-							7	0
				15	Up-down		Frequency increase (UP) command						
				16			Frequency decrease command (DOWN)						
				17	3 -wire operation								
				18	External trip: A Contact (EtA)								
				19	External trip: B Contact (EtB)								
				20	Self-diagnostic function								
				21	Change from PID operation to V/F operation								
				22	2nd source								
				23	Analog hold								
				24	Accel/Decel disable								
				25	Up/down Save Freq. Initialization								
				26	JOG-FX								
				27	JOG-RX								
125	A419	[Input terminal status display]		BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0	0	0
				P8	P7	P6	P5	P4	P3	P2	P1		
126	A41A	[Output terminal status display]		BIT1				BITO				0	0
				3AC				MO					
127	A41B	[Filtering time constant for Multi-function Input terminal]	1~15	If the value is set higher, the responsiveness of the Input terminal is getting slower.								4	0
130	A41E	[Multi-step frequency 4]	$\begin{gathered} 0 \sim 400 \\ {[H z]} \end{gathered}$	It cannot be set greater than F21-[Max frequency].								30.00	0
131	A41F	[Multi-step frequency 5]										25.00	0
132	A420	[Multi-step frequency 6]										20.00	0
133	A421	[Multi-step frequency 7]										15.00	0
134	A422	[Multi-acce time 1]	$\begin{gathered} 0 \sim 6000 \\ {[\mathrm{sec}]} \end{gathered}$									3.0	0
135	A423	[Multi-decel time 1]										3.0	
136	A424	[Multi-accel time 2]										4.0	

Function List

Input/Output Group

$\begin{aligned} & \text { LED } \\ & \text { Display } \end{aligned}$	Address for Communication	Parameter Name	Min/Max Range	Description				Factory Defaults	Adj. during Run
137	A425	[Multi-Decel time 2]	$\begin{gathered} 0 \sim 6000 \\ {[\mathrm{sec}]} \end{gathered}$					4.0	
138	A426	[Multi-Accel time 3]						5.0	
139	A427	[Multi-Decel time 3]						5.0	
140	A428	[Multi-Accel time 4]						6.0	
141	A429	[Multi-Decel time 4]						6.0	
142	A42A	[Multi-Accel time 5]						7.0	
143	A42B	[Multi-Decel time 5]						7.0	
144	A42C	[Multi-Accel time 6]						8.0	
145	A42D	[Multi-Decel time 6]						8.0	
146	A42E	[Multi-Accel time 7]						9.0	
147	A42F	[Multi-Decel time 7]						9.0	
150	A432	[Analog output item select]	0~3			Output to		0	0
					Outputitem	200V	400V		
				0	Output freq.	Max frequency			
				1	Output current	150\%			
				2	Output voltage	AC 282 V	AC 564V		
				3	Drive DC link voltage	DC 400V	DC 800V		
151	A433	[Analog output level adjustment]	$\begin{gathered} 10 \sim 200 \% \\ {[\%]} \end{gathered}$	Based on 10V.				100	0
152	A434	[Frequency detection level]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Used when 154 or 155 is set to 0-4. Cannot be set higher than F21.				30.00	0
153	A435	[Frequency detection						10.00	0
154	A436	bandwidth] [Multi-function output terminal select]	$0 \sim 19$	0	FDT-1			12	0
				1	FDT-2				
				2	FDT-3				
1155	A437	[Multi-function relay select]		3	FDT-4			17	
				4	FDT-5				
				5	Overload (OLt)				
				6	Drive overload (IOLt)				
				7	Motor stall (STALL)				
				8	Over voltage trip (Ovt)				
				9	Low voltage trip (Lvt)				

Input/Output Group

Input/Output Group

LED Display	Address for Communication	Parameter Name	Min/Max Range		Description	Factory Defaults	Adj. during Run
163	A43F	[Wait time after loss of frequency command]	$\begin{gathered} 0.1 ~ 120 \\ {[\mathrm{sec}]} \end{gathered}$	This is the time drive determines whether there is the input frequency command or not. If there is no frequency command input during this time, drive starts operation via the mode selected at 162 .		1.0	0
164	A440	[Communication time setting]	$\begin{gathered} 2 \sim 100 \\ {[\mathrm{~ms}]} \end{gathered}$	Frame communication time		5	0
165	A441	[Parity/stop bit setting]	$0 \sim 3$		the protocol is set, the communication format can be set.	0	0
				0	Parity: none, Stop bit: 1		
				1	Parity: none, Stop bit: 2		
				2	Parity: even, Stop bit: 1		
				3	Parity: odd, Stop bit: 1		
166	A442	[Read address register 1]	$0 \sim 42239$	The user can register up to 8 discontinuous addresses and read them all with one read command.		5	0
167	A443	[Read address register 2]				6	
168	A444	[Read address register 3				7	
169	A445	[Read address register 4]				8	
170	A446	[Read address register 5]				9	
171	A447	[Read address register 6]				10	
172	A448	[Read address register 7]				11	
173	A449	[Read address register 8]				12	
174	A44A	[Write address register 1]	$0 \sim 42239$	The user can register up to 8 discontinuous addresses and write them all with one write command		5	0
175	A44B	[Write address register 2]				6	
176	A44C	[Write address register 3]				7	
177	A44D	[Write address register 4]				8	
178	A44E	[Write address register 5]				5	
179	A44F	[Write address register 6]				6	
180	A450	[Write address register 7]				7	
181	A451	[Write address register 8]				8	
$182^{1\}}$	A452	[Brake open current]	$\begin{gathered} 0 \sim 180 \\ {[\%]} \end{gathered}$		urrent level to open the brake. t according to H33's (motor rated current) size	50.00	0

1) It is indicated when choosing I54~155 as a 19 (Brake signal).

LED Display	Address for Communication	Parameter Name	Min/Max Range	Description	Factory Defaults	Adj. during Run
183	A453	[Brake open delay time]	$\begin{gathered} 0 \sim 10 \\ {[\mathrm{~s}]} \end{gathered}$	Sets Brake open dely time.	1.00	X
184	A454	[Brake open FX frequency]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets FX frequency to open the brake	1.00	X
185	A455	[Brake open RX frequency]	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets RX frequency to open the brake	1.00	X
186	A456	[Brake close delay time]	$\begin{gathered} 0 \sim 19 \\ {[s]} \end{gathered}$	Sets delay time to close the brake	1.00	X
187	A457	[Brake close frequency	$\begin{gathered} 0 \sim 400 \\ {[\mathrm{~Hz}]} \end{gathered}$	Sets frequency to close the brake	2.00	X

Protective Functions

| The |
| :--- | :--- | | The drive turns off its output when the output current of the drive flows more than 200% of the drive rated current. |
| :--- |
| The drive turns off its output when a ground fault occurs and the ground fault current is more than the internal |
| setting value of the drive |

| | Remedy |
| :--- | :--- | :--- |

We open up a brighter future through
efficient and convenient energy solutions

- According to The WEEE Directive, please do not discard the device with your household waste.

- Headquarter

LS-ro 127(Hogye-dong) Dongan-gu, Anyang-si, Gyeonggi-Do, 14119, Korea

- Seoul Office

LS Yongsan Tower, 92, Hangang-daero, Yongsan-gu, Seoul, 04386, Korea Tel: 82-2-2034-4033, 4888, 4703 Fax: 82-2-2034-4588
E-mail: automation@ls-electric.com

www.Is-electric.com

- Overseas Branches

-LS ELECTRIC Tokyo Office (Japan)
Tel: 81-3-6268-8241 E-Mail: tokyo@ls-electric.com
-LS ELECTRIC Beijing Office (China)
Tel: 86-10-5095-1631 E-Mail: china.auto@Iselectric.com.cn
-LS ELECTRIC Shanghai Office (China)
Tel: 86-21-5237-9977 E-Mail: china.auto@lselectric.com.cn
-LS ELECTRIC Guangzhou Office (China)
Tel: 86-20-3818-2883 E-Mail: china.auto@lselectric.com.cn
-LS ELECTRIC Chengdu Office (China)
Tel: 86-28-8670-3201 E-Mail: china.auto@lselectric.com.cn
-LS ELECTRIC Qingdao Office (China)
Tel: 86-532-8501-2065 E-Mail: china.auto@lselectric.com.cn
-LS ELECTRIC Nanjing Office (China)
Tel: 86-25-8467-0005 E-Mail: china.auto@Iselectric.com.cn
-LS ELECTRIC Bangkok Office (Thailand)
Tel: 66-90-950-9683 E-Mail: thailand@ls-electric.com
-LS ELECTRIC Jakarta Office (Indonesia)
Tel: 62-21-2933-7614 E-Mail: indonesia@ls-electric.com
-LS ELECTRIC Moscow Office (Russia)
Tel: 7-499-682-6130 E-Mail: info@lselectric-ru.com
-LS ELECTRIC America Western Office (Irvine, USA)
Tel: 1-949-333-3140 E-Mail: america@ls-electric.com

[^0]: 1) Means average braking torque during Decel to stop of a motor.
 2) Refer to Chapter 16 of user's manual for DB resistor specification.
 3) UL Type 1 with top cover and conduit box installed.
[^1]: Use
 ※When you use external power supply (24V) for multi-function input terminal (P1~P8), apply voltage higher than 12 V to activate.
 ※ Tie the control wires more than 15 cm away from the control terminals. Otherwise, it interferes front cover reinstallation.

[^2]: 1) 4 LEDs above are set to blink when a fault occurs.
[^3]: 1) Target frequency can be set at 0.0 (the 1st code of drive group). Even though the preset value is 0.0 , it is user-settable.

 The changed frequency will be displayed after it is changed.

[^4]: 1) This function can be available with iG5A Communication Option Module..
[^5]: 1) Only displayed when F 4 is set to 1 (DC brake to stop). 2) If H 40 is set to 3 (Sensorless vector), Max. frequency is settable up to 300 Hz .
 2) Only displayed when F24 (Frequency high/low limit select) is set to 1
[^6]: 1) Set $F 30$ to 2(User V/F) to display this parameter.
 2) Set F50 to 1 to display this parameter.
[^7]: 1) It is indicated when setting bit 2 of F 59 as 1 2) Set F 63 to 1 to display this parameter.
[^8]: 1) Normal acceleration has first priority. Even though \#4 is selected along with other bits, Drive performs Speed search \#4.
 2) H 30 is preset based on drive rating.
[^9]: 1) H32 ~ H36 factory default values are set based on OTIS-LG motor.
 2) Set H 40 to 3 (Sensorless vector control) to display this parameter.
[^10]: 1) Set H 49 to 1 (PID control) to display this parameter.
 2) Set H 49 as a 1
 3): it is indicated when setting H64(KEB drive select) as a 1 (KEB does not operate when cut power after loading ting input (about 10\%).
[^11]: 1) Exception: Since SV004iG5A-2/SV004iG5A-4 is Natural convection type, this code is hidden.
[^12]: *See "Chapter 14 Troubleshooting and maintenance" for External trip A/B contact.

 * Each multi-function input terminal must be set differently.

